Four-co-ordinate Lanthanide Metal(III) Chloro(alkyl)s: Synthesis and X-Ray Structure of $[LaR_3(\mu\text{-}Cl)Li(pmdeta)]$ $[R = CH(SiMe_3)_2,$ **pmdeta** = **N,N,N',N",N'~pentamethyldiethylenetriamine]t**

Jerry L. Atwood,[®] Michael F. Lappert,^b Richard G. Smith,^b and Hongming Zhang^a

^a*Department of Chemistry, University of Alabama, University, Al35486, U.S.A.* **b School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, England, U.K.**

The lanthanum(iii) chloro(alkyl) [LaR₃(µ-CI)Li(pmdeta)] [R = CH(SiMe₃)₂, pmdeta = MeN(CH₂CH₂NMe₂)₂] (1) was prepared from anhydrous LaCl₃ and 3LiR in tetrahydrofuran in the presence of pmdeta; compound (1) has approximately tetrahedral environments for the lanthanum and lithium ions $[C-La-C' (av.) = 108.8(6)°]$, an almost linear La-CI-Li unit [La-CI-Li = 165(1)"], and a mean La-C distance of **2.60(3) A.**

Although the term 'organolanthanide chemistry' is much used as a convenient method of classification, it is evident that the chemistry of complexes of the early lanthanides $[La^{3+} (f^0),$ Ce³⁺ (f¹), Pr³⁺ (f²), and Nd³⁺ (f³)] differs markedly from that of the later analogues $\left[Sm^{3+}(\overrightarrow{f})\right]$ to $Yb^{3+}(\overrightarrow{f}^{13})$, and Lu^{3+} $(f¹⁴)$].¹ This is due primarily to the progressive change in radius, from La³⁺ ($r = 1.06$ Å) to Lu³⁺ ($r = 0.85$ Å).² For a suite of ligands which co-ordinately satisfies a late lanthanide, it is often noted that data for the isoleptic early lanthanide analogue are elusive; *e.g.* (i) LnCl₃ + 2LiCp \rightarrow [{LnCp₂(μ -Cl) $\{0\}$ for the f^5 to f^{14} complexes but LnCp₃ for the f^0 to f^3 analogues $(Cp = \eta - C_5H_5)^{-1}$ or (ii) while LuCl₃ with $LiC_6H_3Me_2-2,6$ in tetrahydrofuran (thf) gave [Li(thf)₄]- $[Lu(C_6H_3Me_2-2,6)_4]$, the analogous reaction with LaCl₃ yielded unidentified products.3 There are only three published reports to date of X-ray-authenticated compounds containing an early lanthanide metal-carbon a-bond, *viz.* [Nd(q- C_5Me_5 ₂R] $[R = CH(SiMe_3)_2]$,⁴ $[Nd{(n-C_5Me_4)_2}SiMe_2]R]$,⁵ and $[LaR₃]$.⁶

A species of the type $[YbCIR_3]^-$, with $[Li(thf)_4]^+$ as counterion, obtained from $YbCl₃ + 3LiR$ in thf, was

Figure 1. Molecular structure and atom numbering scheme for $[LaR₃(\mu-Cl)Li(pmdeta)]$ (1). Selected bond distances (\tilde{A}) and angles (°): La-C(1) 2.68(4), La-C(2) 2.55(2), La-C(3) 2.58(2), La-Cl 2.761(6), Li-N(l) 2.13(4), Li-N(2) 2.07(4), Li-N(3) 2.13(4), Li-CI 2.28(4); C(1)-La-C(2) 116.2(6), C(1)-La-C(3) 108.8(6), C(3)-La-C(2) 107.4(6), C(1)-La-CI 105.3(5), C(2)-La-CI 115(2), C(3)-La-CI 113.6(4), La–Cl–Li $165(1)$.

X-ray-characterised.7 We now report that the related reaction with LaCl₃ yields $[LaR₃(\mu-Cl)Li(thf)₃]$, which with pmdeta gave $[LaR_3(\mu\text{-}Cl)Li(pmdeta)]$ **(1)** $(pmdeta = N, N, N', N'', N''$ pentamethyldiethylenetriamine) [equation (1)]. Recrystallisation from diethyl ether yielded extremely dioxygen- and moisture-sensitive colourless crystals of (1) , identified by elemental analyses $(C, H, N, and C)$, and H and L i n.m.r. spectra; \ddagger and by single-crystal X-ray analysis. §

$$
LaCl3 + 3LiR \xrightarrow{pmdeta, \text{thf}, ca. 298 \text{ K}} [LaR3(\mu-CI)Li(pmdeta)]
$$

(1)
+ 2LiCl (1)

The molecular structure and atom-numbering scheme for [$LaR_3(\mu$ -Cl] $Li(pmdeta)$] (1) are depicted in Figure 1. The molecule was shown to be monomeric, containing La3+ and Li+, in approximately tetrahedral environments, linked *via* a rare example of a single chloride bridge.8 The pmdeta was co-ordinated in a tridentate fashion to lithium.

The La– $C(\sigma)$ bond lengths in the complex (1) were in the range $2.53(2)$ — $2.60(2)$ Å. There is only one other lanthanum alkyl for which X -ray data are available; this is the three-coordinate homoleptic alkyl $[LaR_3]$,⁶ which had $La-C(\sigma)$ bond lengths of 2.515(9) \AA . The average C-La-C' angle in **(1)** $[108.8(6)^\circ]$ showed a lanthanum(III) environment not significantly different from that in $[LaR_3]$ ⁶ [C-La-C' 109.9(2)^o]. It appears that the vacant co-ordination site in $[LaR₃]$ is large enough to allow binding of the $(\mu$ -Cl)Li(pmdeta) moiety without significant distortion of the $LaR₃$ skeleton.

In $[Ln(\eta-C_5Me_5)_2R]$ (Ln = Y^9 or Nd⁴) and $[LnR_3]$ ⁶ (Ln = La or Sm), a methyl carbon atom from one SiMe₃ group in each bis(trimethylsilyl)methyl (\overline{R}) ligand was located close to the metal centre. In $[LaR₃(\mu-CI)Li(pmdeta)]$ (1), no such

i No reprints available.

 \ddagger *Selected n.m.r. data* [rel. to ext. SiMe₄ (for ¹H) or aq. LiNO₃ (for ⁷Li), 80 MHz for ¹H, 31 MHz for ⁷Li, in C_6D_6 at *ca.* 298 K] for [LaR₃(μ -Cl)Li(pmdeta)] (1); δ_H 0.52 (54H, s, SiMe₃), 1.92 (Mepmdeta, 15H, m), and 1.62 (CH₂-pmdeta, 8H, m); the methyne (CH) signal could not be unambiguously assigned; δ_{Li} -0.20 p.p.m.

[§] *Crystal data* for $[LaR_3(\mu$ -Cl)Li(pmdeta)] (1): space group $P\overline{1}$, $a =$ 12.066(6), $b = 13.492(6)$, $c = 16.936(8)$ Å, $\alpha = 79.24(5)$, $\beta = 86.69(6)$, $\gamma = 68.98(6)$ °, and $D_c = 1.09$ g cm⁻³ for $U = 2528.41$ Å³ and $Z = 2$. Least-squares refinement based on 2616 observed reflections led to a final conventional *R* value of 0.072 ($R' = 0.082$). Anisotropic thermal parameters were used for La, Cl, and Si atoms. Hydrogen atoms were not located, but those on the La-bonded carbon atoms were placed in calculated positions. Details of data collection are given in J. *Chem. SOC., Dalton Trans.,* 1979,45. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. I.

agostic interactions were observed; the closest $La \cdot \cdot \cdot C(Me)$ approach was greater than 3.2 A.

The La-C1-Li moiety in **(1)** was approximately linear $[165.1(1)$ ^o], with each of the La–Cl and Li–Cl interactions strong. Thus, the La–Cl distance of $2.762(2)$ Å was near the value found for a terminal La–Cl single bond, $cf.^{10}$ 2.72(1) Å in $[\{LaCl_3(2,6-dmp)(OH_2)_n\}_m]$ (2,6-dmp = 2,6-dimethyl-4pyrone). The Yb-Cl bond distance of $2.486(6)$ \AA^7 in $[\text{YbClR}_3]$ ⁻ would lead to an expectation of 2.69 \hat{A} in the, as yet unknown, isoleptic lanthanate complex. We conclude that the La-C1 interaction in **(1)** is only slightly diminished by the presence of the $[Li(pmdeta)]$ ⁺ fragment. Moreover, the Li-Cl distance in the complex **(l),** at 2.28(4) **A,** is one of the shortest on record. The $Li \cdot \cdot \cdot Cl$ separation in crystalline LiCl is 2.56 \AA ,¹¹ and ranges from 2.33 to 2.42 \AA in variously solvated LiCl complexes.12 A mean Li-C1 distance of 2.405 **A** was reported for the doubly Cl-bridged f^3 complex $[Nd{\{\eta - C_5H_3(SiMe_3)\}}_2$ - $1,3$ ₂(μ -Cl)₂Li(thf)₂].¹³

We thank the S.E.R.C. (M. F. L. and R. G. **S.)** and the N.S.F. (J. L. **A.** and H. Z.) for support, Drs. P. J. **V.** Jones and J. McMeeking for their interest, and I.C.I. p.l.c., Chemicals and Polymers Group, for an S.E.R.C. CASE award (to R. G. **S.).**

Received, 26th May 1988; Corn. 810211 7A

References

1 For recent comprehensive reviews, see H. Schumann, *Angew. Chem., Int. Ed. Engl.,* 1984,23,474; *J. Orgunomet. Chem.,* 1985, 281,95; P. L. Watson and G. W. Parshall, *Acc. Chem. Res.,* 1985, 18, 51; W. J. Evans, J. *Orgunornet. Chem.,* 1983, *250,* 217; *Adv. Orgunornet. Chem.,* 1985,24,131; T. J. Marks and R. D. Ernst, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, **F.** G. A. Stone, and **E. W.** Abel, Pergamon, **Oxford,** 1982; M. N. Bochkarev, G. **S.** Kalinina, and L. N. Bochkarev, *Russ. Chem. Rev. (Engl. Transl.),* 1985, **54,** 802.

- 2 R. D. Shannon and C. T. Prewitt, *Actu Crystallogr.. Sect. B,* 1969, 25, 925.
- 3 **S. A.** Cotton, F. A. Hart, M. B. Hursthouse, and A. J. Welch, J. *Chem. Soc., Chem. Commun.,* 1972, 1225.
- 4 G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann, and T. J. Marks, *J. Am. Chem. Soc.*, 1985, 107, 8091.
- *5 G.* Jeske, L. E. Schock, P. N. Swepston, H. Schumann, andT. J. Marks, *J. Am. Chem. Soc.,* 1985, 107, 8103.
- 6 P. B. Hitchcock, M. F. Lappert, R. G. Smith, R. **A.** Bartlett, and P. P. Power, J. *Chem. Soc., Chem. Commun.,* 1988. 1007.
- 7 J. L. Atwood, W. E. Hunter, R. D. Rogers. J. Holton, J. McMeeking, R. Pearce, and M. F. Lappert, J. *Chem. SOC., Chem. Commun.,* 1978, 140.
- 8 For another example in organo-f-element chemistry, see P. C. Blake, M. F. Lappert, R. G. Taylor, J. L. Atwood. and H. Zhang, *Inorg. Chim. Actu,* 1987, 139, 13.
- 9 K. H. den Haan, J. L. de Boer, J. H. Teuben, **A.** L. Spek, B. Kojic-Prodić, G. R. Hays, and R. Huis, *Organometallics*, 1986, 5, 1726.
- 10 C. B. Castellani and V. Tazzoli, *Actu Crystullogr., Sect.* C, 1984, **40,** 1834.
- 11 **A.** F. Wells, 'Structural Inorganic Chemistry,' 4th edn., Oxford University Press, Oxford, 1975, p. 375.
- 12 F. Durant, P. Piret, and M. van Meerssche, *Actu. Crystullogr.,* 1967, 22, 52.
- 13 M. F. Lappert, A. Singh, J. L. Atwood, and W. E. Hunter, J. *Chem. SOC., Chem. Commun.,* 1981, 1191.